Etymologie, Etimología, Étymologie, Etimologia, Etymology
UK Vereinigtes Königreich Großbritannien und Nordirland, Reino Unido de Gran Bretańa e Irlanda del Norte, Royaume-Uni de Grande-Bretagne et d'Irlande du Nord, Regno Unito di Gran Bretagna e Irlanda del Nord, United Kingdom of Great Britain and Northern Ireland
Logik, Lógica, Logique, Logica, Logic
mathematische Logik, Lógica matemática, Logique mathématique, Logica matematica, Mathematical logic

A

B

Boolean algebra (W3)

Die engl. "Boolean algebra", dt. "Boolesche Algebra", wurde nach dem britischen Mathematiker George Boole (1815 - 1864) benannt.

(E?)(L?) http://www.businessdictionary.com/terms-by-letter.php?letter=B


(E?)(L?) http://www.christianlehmann.eu/


(E?)(L?) http://193.175.207.139:8080/lido/Lido
Boolean algebra

(E?)(L?) http://foldoc.org/George+Boole


(E6)(L1) http://computer.howstuffworks.com/boolean.htm


(E?)(L?) http://www.oedilf.com/db/Lim.php?Word=Boolean%20algebra
Limericks on Boolean algebra

(E2)(L1) http://dictionary.reference.com/browse/Boolean+algebra


(E?)(L1) http://www-groups.dcs.st-and.ac.uk/~history/Glossary/


(E?)(L1) http://plato.stanford.edu/entries/boolalg-math/

The Mathematics of Boolean Algebra

First published Fri Jul 5, 2002; substantive revision Fri Feb 27, 2009

Boolean algebra is the algebra of two-valued logic with only sentential connectives, or equivalently of algebras of sets under union and complementation. The rigorous concept is that of a certain kind of algebra, analogous to the mathematical notion of a group. This concept has roots and applications in logic (Lindenbaum-Tarski algebras and model theory), set theory (fields of sets), topology (totally disconnected compact Hausdorff spaces), foundations of set theory (Boolean-valued models), measure theory (measure algebras), functional analysis (algebras of projections), and ring theory (Boolean rings). The study of Boolean algebras has several aspects: structure theory, model theory of Boolean algebras, decidability and undecidability questions for the class of Boolean algebras, and the indicated applications. In addition, although not explained here, there are connections to other logics, subsumption as a part of special kinds of algebraic logic, finite Boolean algebras and switching circuit theory, and Boolean matrices.


(E?)(L?) http://en.wikipedia.org/wiki/Stone%27s_representation_theorem_for_Boolean_algebras
Stone's representation theorem for Boolean algebras

(E6)(L1) http://mathworld.wolfram.com/BooleanAlgebra.html


(E?)(L?) http://wordcraft.infopop.cc/Archives/2004-2-Feb.htm


C

D

disjunction (W3)

Die engl. "disjunction", dt. "Disjunktion" bezeichnet das "einschliessende ODER". Bereits der Stoiker "Chrysippus of Soli" (280 BC - 206 BC) und seine Nachfolger diskutierten diese logische Beziehung.

Im Englischen ist dieser Begriff seit dem 16.Jh. für öffentlich zugängliche Werke nachgewiesen. (Die Fachleute schrieben noch lateinisch.) Im "OED" ist als Referenz "The Lawiers Logike, exemplifying the Praecepts of Logike by the Practise of the Common Lawe" von "Abraham Fraunce" (1588) und "A Defence of the Godlie Ministers" von "Dudley Fenner" (1587), aufgeführt.

Sprachlich geht engl. "disjunction" zurück auf lat. "dis-" = dt. "zer-", "ver-", "fort-", "weg-" und lat. "iungere" = dt. "verbinden".

(E?)(L1) http://www.alanwood.net/demos/ent4_frame.html
HTML 4.01 Character Entity References: logical disjunction ∨, ∨

(E?)(L2) http://www.britannica.com/
disjunction (logic) | inclusive disjunction (logic)

(E?)(L?) http://www.christianlehmann.eu/


(E?)(L?) http://193.175.207.139:8080/lido/Lido


(E?)(L?) http://www.cut-the-knot.org/arithmetic/funny/count.shtml#disjunction


(E?)(L1) http://www.fileformat.info/info/unicode/char/d.htm
Unicode Character 'LOGICAL OR' (U+2228): disjunction ∨

(E1)(L1) http://www.medterms.com/script/main/alphaidx.asp?p=m_dict
Meiotic nondisjunction | Mitotic nondisjunction | Nondisjunction

(E?)(L?) http://www.philosophypages.com/dy/ix1.htm
disjunction

(E2)(L1) http://dictionary.reference.com/
disjunction | nondisjunction

(E?)(L1) http://plato.stanford.edu/contents.html
disjunction (Ray Jennings)

(E6)(L?) http://www.unicode.org/charts/charindex.html


(E?)(L?) http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1018&context=onlinedictinvertzoology
disjunction | nondisjunction

(E6)(L1) http://mathworld.wolfram.com/letters/D.html
Disjunction | Exclusive Disjunction | Inclusive Disjunction

E

F

Formal logic (W3)

Engl. "formal logic" (1855) beschäftigt sich mit der "Form" nicht mit dem "Inhalt" von Aussagen.

(E?)(L2) http://www.britannica.com/EBchecked/topic/213716/formal-logic
formal logic

(E?)(L2) http://www.britannica.com/EBchecked/topic/213740/Formal-Logic-or-the-Calculus-of-Inference-Necessary-and-Probable
Formal Logic; or, the Calculus of Inference, Necessary and Probable (work by De Morgan)

(E?)(L?) http://www.christianlehmann.eu/


(E?)(L?) http://193.175.207.139:8080/lido/Lido

Designation Standard Language


(E2)(L1) http://dictionary.reference.com/browse/formal+logic


(E6)(L1) http://mathworld.wolfram.com/FormalLogic.html

SEE: Symbolic Logic


(E?)(L?) http://mathworld.wolfram.com/SymbolicLogic.html

The study of the meaning and relationships of statements used to represent precise mathematical ideas. Symbolic logic is also called formal logic.

SEE ALSO: Logic, Metamathematics


(E?)(L?) http://en.wikibooks.org/wiki/Category:Dewey/100
Formal Logic

(E?)(L?) http://en.wikipedia.org/wiki/List_of_English_words_of_German_origin#Mathematics_and_formal_logic

Mathematics and formal logic


(E1)(L1) http://ngrams.googlelabs.com/graph?corpus=0&content=Formal logic
Abfrage im Google-Corpus mit 15Mio. eingescannter Bücher von 1500 bis heute.

Engl. "Formal logic" taucht in der Literatur um das Jahr 1840 auf.

Erstellt: 2011-03

Fuzzylogik (W3)

Dass der Mensch sich selbst nicht gerade für logisch denkend hält kann man an der "Fuzzylogik" erkennen. Dabei handelt es sich um Methoden zur Nachahmung der menschlichen Denkweise.

Wenn man bedenkt, dass engl. "fuzzy" = "verschwommen" heißt, handelt es sich bei der "Fuzzylogik" also um eine "verschwommene Logik".

(E6)(L1) http://www.anglizismenindex.de/


(E?)(L?) http://en.wikipedia.org/wiki/Fuzzing


(E?)(L?) http://www.owasp.org/index.php/JBroFuzz

JBroFuzz is a stateless network protocol fuzzer that emerged from the needs of penetration testing. Written in Java, it allows for the identification of certain classess of security vulnerabilities, by means of creating malformed data and having the network protocol in question consume the data.


G

Gödel's incompleteness theorem (W3)

Die "Gödel'schen Unvollständigkeitssätze", span. "Teorema de Gödel", frz. "Théorčme d'incomplétude de Gödel", engl. "Gödel's incompleteness theorem", brachten die Mathematik ins Wanken. Besagt doch der "Erste Gödel'sche Unvollständigkeitssatz" (1931), daß "eine mathematische Theorie, die die Arithmetik umfasst, und die widerspruchsfrei ist, nicht alle in ihr wahren Aussagen beweisen kann".

Es gilt also die Aussage, daß nicht jede wahre Aussage bewiesen werden kann.

Der "Zweite Gödel'sche Satz" schlägt in die selbe Bresche und besagt: "Kein formales System, das wesentliche Teile der Mathematik beinhaltet, kann seine eigene Widerspruchsfreiheit beweisen.".

(E?)(L2) http://www.britannica.com/


(E?)(L?) http://www.businessdictionary.com/terms-by-letter.php?letter=G




(E?)(L?) http://www.friesian.com/goedel/

On Gödel's Philosophy of Mathematics
by Harold Ravitch, Ph.D.
Chairman, Department of Philosophy
Los Angeles Valley College

Table of Contents


(E?)(L?) http://www.friesian.com/goedel.htm

Palle Yourgrau,
A World Without Time,
The Forgotten Legacy of Gödel and Einstein
Basic Books, 2005
...


(E?)(L?) http://kgs.logic.at/

The Kurt Gödel Society was founded in 1987 and is chartered in Vienna. It is an international organization for the promotion of research in the areas of Logic, Philosophy, History of Mathematics, above all in connection with the biography of Kurt Gödel, and in other areas to which Gödel made contributions, especially mathematics, physics, theology, philosophy and Leibniz studies.


(E?)(L?) http://kgs.logic.at/index.php?id=23

Short biography of Kurt Gödel (collected by Rosalie Iemhoff)
...


(E?)(L?) http://www.logoslibrary.eu/


(E?)(L?) http://www.logoslibrary.eu/pls/wordtc/new_wordtheque.main?lang=en&source=author
Gödel Kurt

(E?)(L?) http://www.logoslibrary.eu/document.php?document_id=56876&code_language=EN

Title: THE MODERN DEVELOPMENT OF THE FOUNDATIONS OF MATHEMATICS IN THE LIGHT OF PHILOSOPHY
Author: GÖDEL KURT


(E?)(L1) http://www.mathacademy.com/pr/prime/articles.asp
...
Gödel’s Theorems

Kurt Gödel is most famous for his second incompleteness theorem, and many people are unaware that, important as it was and is within the field of mathematical logic and beyond, this result is only the middle movement, so to speak, of a metamathematical symphony of results stretching from 1929 through 1937. These results are: (1) the Completeness Theorem; (2) the First and Second Incompleteness Theorems; and (3) the consistency of the Generalized Continuum Hypothesis (GCH) and the Axiom of Choice (AC) with the other axioms of Zermelo-Fraenkel set theory. These results are discussed in detail below.
...

(E?)(L?) http://www.math.niu.edu/~rusin/known-math/index/EDM.html


(E?)(L?) http://www.philosophypages.com/dy/g5.htm#goed

Gödel, Kurt (1906-1978)
...


(E?)(L1) http://plato.stanford.edu/entries/goedel/

Gödel, Kurt (Juliette Kennedy)

Kurt Gödel

First published Tue Feb 13, 2007; substantive revision Tue Jul 5, 2011

Kurt Friedrich Gödel (b. 1906, d. 1978), “established, beyond comparison, as the most important logician of our times,” in the words of Solomon Feferman (Feferman 1986), founded the modern, metamathematical era in mathematical logic. His Incompleteness Theorems, among the most significant achievements in logic since, perhaps, those of Aristotle, are among the handful of landmark theorems in twentieth century mathematics. His work touched every field of mathematical logic, if it was not in most cases their original stimulus. In his philosophical work Gödel formulated and defended mathematical Platonism, involving the view that mathematics is a descriptive science, and that the concept of mathematical truth is an objective one. On the basis of that viewpoint he laid the foundation for the program of conceptual analysis within set theory (see below). He adhered to Hilbert's “original rationalistic conception” in mathematics (as he called it); he was prophetic in anticipating and emphasizing the importance of large cardinals in set theory before their importance became clear.


(E?)(L?) http://mathworld.wolfram.com/Bernays-GoedelSetTheory.html

Bernays-Gödel Set Theory
SEE: von Neumann-Bernays-Gödel Set Theory


(E6)(L1) http://mathworld.wolfram.com/letters/G.html


(E?)(L?) http://mathworld.wolfram.com/GoedelsCompletenessTheorem.html

Gödel's Completeness Theorem


(E?)(L?) http://mathworld.wolfram.com/GoedelsFirstIncompletenessTheorem.html

Gödel's First Incompleteness Theorem


(E?)(L?) http://mathworld.wolfram.com/GoedelsIncompletenessTheorems.html

Gödel's Incompleteness Theorems


(E?)(L?) http://mathworld.wolfram.com/GoedelNumber.html

Gödel Number


(E?)(L?) http://mathworld.wolfram.com/GoedelsSecondIncompletenessTheorem.html

Gödel's Second Incompleteness Theorem


(E?)(L?) http://mathworld.wolfram.com/vonNeumann-Bernays-GoedelSetTheory.html

von Neumann-Bernays-Gödel Set Theory


(E?)(L?) http://scienceworld.wolfram.com/biography/Goedel.html

Gödel, Kurt (1906-1978)


(E2)(L1) http://dictionary.reference.com/browse/Gödel, Kurt


(E?)(L?) http://turnbull.mcs.st-and.ac.uk/history/Mathematicians/Godel.html

Kurt Gödel (1906 - 1978)
Gödel proved fundamental results about axiomatic systems showing in any axiomatic mathematical system there are propositions that cannot be proved or disproved within the axioms of the system.


(E?)(L?) http://turnbull.mcs.st-and.ac.uk/history/Biographies/Godel.html

Kurt Gödel
Born: 28 April 1906 in Brünn, Austria-Hungary (now Brno, Czech Republic)
Died: 14 Jan 1978 in Princeton, New Jersey, USA
...


(E?)(L?) http://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorem

Kurt Gödel - Gödel's incompleteness theorem

Gödel's incompleteness theorems are two theorems of mathematical logic that establish inherent limitations of all but the most trivial axiomatic systems capable of doing arithmetic. The theorems, proven by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The two results are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible, giving a negative answer to Hilbert's second problem.

The first incompleteness theorem states that no consistent system of axioms whose theorems can be listed by an "effective procedure" (e.g., a computer program, but it could be any sort of algorithm) is capable of proving all truths about the relations of the natural numbers (arithmetic). For any such system, there will always be statements about the natural numbers that are true, but that are unprovable within the system.

The second incompleteness theorem, a corollary of the first, shows that such a system cannot demonstrate its own consistency.
...


(E?)(L?) http://en.wikipedia.org/wiki/G%C3%B6del%27s_ontological_proof

Kurt Gödel - Gödel's ontological proof


Erstellt: 2012-01

H

I

Informal logic (W3)

Die Bezeichnung engl. "Informal logic" kam in den 1970er Jahren durch "Leo Groarke" auf. Der Google "Books Ngram Viewer" findet "Informal logic" allerdings bereits ab 1940.

(E?)(L1) http://plato.stanford.edu/contents.html
informal logic - see logic: informal

(E1)(L1) http://ngrams.googlelabs.com/graph?corpus=0&content=Informal logic
Abfrage im Google-Corpus mit 15Mio. eingescannter Bücher von 1500 bis heute.

Engl. "Informal logic" taucht in der Literatur um das Jahr 1940 auf.

J

K

L

logic (W3)

Das griech "logikę" bedeutete etwa "Wissenschaft des Denkens", "vernünftiges Denken" (griech. "lógos" = "Rede", "Wort", "Vernunft"). Es wurde von den Stoikern benutzt und umfasste viele philosophische Bereiche (die heute nicht mehr zur Logik gezählt werden).

Das Wort engl. "logic" erhielt seine moderne Bedeutung im 3.Jh. in den Kommentaren des "Alexander von Aphrodisias" zu den Werken des Aristoteles (384-322 v.u.Z.). Die logischen Schriften des Aristoteles dienten seinen Schülern als Hilfsmittel zur Wahrheitserkenntnis und wurde unter dem Begriff "Organon" zusammengefasst.

Das "OED" weist als ersten Nachweis des Wortes "logic" auf "Chaucer’s: Canterbury Tales" im Jahr 1362 hin.

Die moderne Logik wird von Augustus de Morgan (1806-1871) und "George Boole" (1815-1864) eingeläutet.

Diese beiden Begriffe wurden von "De Morgan (1847) und John Venn (1881) als Buchtitel benutzt.

Von anderen Autoren wurden im 19.Jh. die Bezeichnungen "Deductive logic" und "Inductive logic" benutzt.

(E?)(L?) https://aeon.co/essays/the-rise-and-fall-and-rise-of-logic

What is logic?

Is logical thinking a way to discover or to debate? The answers from philosophy and mathematics define human knowledge.
...


(E?)(L?) http://jeff560.tripod.com/mathsym.html
Eine Übersicht mathematischer Symbole inklusive der logischen Symbole und ihres ersten Auftretens findet man auf der Seite "Earliest Uses of Symbols of Set Theory and Logic" von "Jeff Miller".

(E?)(L?) http://jeff560.tripod.com/set.html

Earliest Uses of Symbols of Set Theory and Logic
Last updated: Sept. 1, 2010

The study of logic goes back more than two thousand years and in that time many symbols and diagrams have been devised. Around 300 BC Aristotle introduced letters as term-variables, a "new and epoch-making device in logical technique." The modern era of mathematical notation in logic began with George Boole (1815-1864), although none of his notation survives. Set theory came into being in the late 19th and early 20th centuries, largely a creation of Georg Cantor (1845-1918). See MacTutor's A history of set theory or, for more detail, Set theory from the Stanford Encyclopedia of Philosophy.
...


(E?)(L?) http://www-history.mcs.st-andrews.ac.uk/Search/historysearch.cgi?TOPICS=1&WORD=logic

History Topics


(E?)(L?) http://plato.stanford.edu/entries/alexander-aphrodisias/


(E?)(L?) http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Aristotle.html


(E?)(L?) http://plato.stanford.edu/entries/aristotle-logic/


(E?)(L?) http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/De_Morgan.html


(E?)(L?) http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Boole.html


(E?)(L?) http://plato.stanford.edu/entries/logic-informal/


(E?)(L?) http://plato.stanford.edu/entries/stoicism/




(E?)(L?) http://www.economics.soton.ac.uk/staff/aldrich/logic.htm


(E?)(L?) http://members.aol.com/jeff570/set.html


M

Mathematical logic (W3)

Der italienischer Mathematiker Giuseppe Peano benutzte den Ausdruck engl. "Mathematical logic" (1855) (auch engl. "symbolic logic") zur Bezeichnung dieser "neuen" Wissenschaft, bzw. zur Unterscheidung des "Logik"-Begriffs von der traditionellen Logik.

(E?)(L?) http://www.businessdictionary.com/definition/mathematical-logic.html


(E?)(L?) http://www.christianlehmann.eu/


(E?)(L?) http://193.175.207.139:8080/lido/Lido
"mathematical logic" is non-std English

(E?)(L?) http://world.logic.at/
Mathematical Logic Around the World (Univ Bonn)

(E2)(L1) http://dictionary.reference.com/browse/mathematical+logic


(E?)(L?) http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Peano.html

Peano was the founder of "symbolic logic" and his interests centred on the foundations of mathematics and on the development of a formal logical language.
...


(E?)(L?) http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Peano.html

...
In 1888 Peano published the book Geometrical Calculus which begins with a chapter on "mathematical logic". This was his first work on the topic that would play a major role in his research over the next few years and it was based on the work of Schröder, Boole and Charles Peirce.
...


(E?)(L?) http://en.wikibooks.org/wiki/Category:Dewey/100
Mathematical Logic

(E1)(L1) http://ngrams.googlelabs.com/graph?corpus=0&content=Mathematical logic
Abfrage im Google-Corpus mit 15Mio. eingescannter Bücher von 1500 bis heute.

Engl. "Mathematical logic" taucht in der Literatur um das Jahr 1890 auf.

Erstellt: 2011-03

N

O

Occam's razor (W3)

Eine gängige Erklärung für "Oockham's razor" (auch "law of parsimony"), lautet "Generelles Prinzip eine einfache Erklärung einer komplizierten vorzuziehen", "general principle to prefer the simpler of two competing explanantions".

Die Bezeichnung dt. "Ockhams Rasiermesser", frz. "Rasoir d'Occam", engl. "Ockham's razor", auch engl. "Occam's razor", ist eine - wie ich finde - interessante Konstruktion. Sie bezieht sich natürlich auf den Namen des Scholastikers "Wilhelm von Ockham", engl. "William of Ockham" (~1285 - 09.04.1349). "Von Ockham" steht hier allerdings weder als Adelstitel noch als Nachname wie heute etwa "Schweitzer". Der Namenszusatz "von Ockham" diente einfach nur als Unterscheidungsmerkmal für die vielen Williams die es gab. "William of Ockham" kam aus dem englischen Ort "Ockham". Die Bezeichnung "William of Ockham" wurde allerdings zum feststehenden Begriff und etablierte sich als Name für ein Individuum.

"Ockham's razor" steht also für "William of Ockham's razor".

Bleibt die Frage, worauf sich der Ortsname "Ockham" bezieht.

Der Ortsname engl. "Ockham" geht zurück auf altengl. "ock", "ac" = engl. "oak" und engl. "ham" = dt. "Dorf". Der Ort entstand an einem Platz mit vielen "Eichen", engl. "oaks".



(E1)(L1) http://www.bartleby.com/81/O1.html

Occam (William of) | Occams Razor


(E?)(L?) http://isi.cbs.nl/glossary/term2338.htm




(E?)(L?) http://www.etymonline.com/index.php?term=Occam's razor

Occam's razor


(E?)(L?) http://science.howstuffworks.com/innovation/scientific-experiments/occams-razor.htm

How Occam's Razor Works


(E?)(L?) http://www2.latech.edu/~acm/helloworld/occam.html

Occam

PROC write.string(CHAN output, VALUE string[])=
SEQ character.number = [1 FOR string[BYTE 0]]
output ! string[BYTE character.number]
write.string(terminal.screen, "Hello World!")


(E1)(L1) http://www.marthabarnette.com/learn_o.html#occams

Occam's razor


(E?)(L?) http://www.maths.ox.ac.uk/groups/occam

"OCCAM" = "Oxford Centre for Collaborative Applied Mathematics"


(E1)(L1) http://www.medterms.com/script/main/art.asp?articlekey=26739

Occam's razor


(E?)(L?) http://www.owad.de/owad-archive-quiz.php4?id=2540

"apply Occam's razor" = "use the simplest explanation"


(E2)(L1) http://dictionary.reference.com/browse/Occam, William of


(E2)(L1) http://dictionary.reference.com/browse/Occam's razor


(E?)(L?) http://dictionary.reference.com/etymology/list/o/octopus/4




(E?)(L?) http://www.skepdic.com/occam.html

Occam's razor


(E?)(L?) http://pespmc1.vub.ac.be/ASC/OCCAM'_RAZOR.html

Occam's Razor


(E?)(L?) http://en.wikipedia.org/wiki/Occam%27s_Razor

"Occam's razor" (also written as Ockham's razor from William of Ockham (c. 1287 – 1347), and in Latin lex parsimoniae) is a principle of parsimony, economy, or succinctness used in logic and problem-solving. It states that among competing hypotheses, the hypothesis with the fewest assumptions should be selected.
...


(E1)(L1) http://books.google.com/ngrams/graph?corpus=0&content=Occam's razor
Abfrage im Google-Corpus mit 15Mio. eingescannter Bücher von 1500 bis heute.

Engl. "Occam's razor" taucht in der Literatur um das Jahr 1840 auf.

(E?)(L?) http://corpora.informatik.uni-leipzig.de/


Erstellt: 2013-11

Ockham's razor (W3)

Eine gängige Erklärung für "Oockham's razor" (auch "law of parsimony"), lautet "Generelles Prinzip eine einfache Erklärung einer komplizierten vorzuziehen", "general principle to prefer the simpler of two competing explanantions".

Die Bezeichnung dt. "Ockhams Rasiermesser", frz. "Rasoir d'Occam", engl. "Ockham's razor", auch engl. "Occam's razor", ist eine - wie ich finde - interessante Konstruktion. Sie bezieht sich natürlich auf den Namen des Scholastikers "Wilhelm von Ockham", engl. "William of Ockham" (~1285 - 1349). "Von Ockham" steht hier allerdings weder als Adelstitel noch als Nachname wie heute etwa "Schweitzer". Der Namenszusatz "von Ockham" diente einfach nur als Unterscheidungsmerkmal für die vielen Williams die es gab. "William of Ockham" kam aus dem englischen Ort "Ockham". Die Bezeichnung "William of Ockham" wurde allerdings zum feststehenden Begriff und etablierte sich als Name für ein Individuum.

"Ockham's razor" steht also für "William of Ockham's razor".

Bleibt die Frage, worauf sich der Ortsname "Ockham" bezieht.

Der Ortsname engl. "Ockham" geht zurück auf altengl. "ock", "ac" = engl. "oak" und engl. "ham" = dt. "Dorf". Der Ort entstand an einem Platz mit vielen "Eichen", engl. "oaks".

(E?)(L?) http://www.abc.net.au/radionational/programs/ockhamsrazor/

Ockham’s Razor is a soap box for all things scientific, with short talks by researchers and people from industry with something thoughtful to say about science.


(E?)(L?) http://www.bartleby.com/211/1020.html

The Cambridge History of English and American Literature in 18 Volumes (1907–21).
Volume I. From the Beginnings to the Cycles of Romance.
X. English Scholars of Paris and Franciscans of Oxford.
§ 20. William of Ockham.
...


(E?)(L?) http://www.bartleby.com/214/1404.html

The Cambridge History of English and American Literature in 18 Volumes (1907–21).
Volume IV. Prose and Poetry: Sir Thomas North to Michael Drayton.
XIV. The Beginnings of English Philosophy.
§ 4. The Attitude to Scholasticism of Duns Scotus and of Ockham.
...


(E?)(L?) http://www.businessdictionary.com/terms-by-letter.php?letter=O

Ockham's razor


(E?)(L1) http://www.hs-augsburg.de/~harsch/a_alpha.html

Guillelmus de Ockham (ca. 1288 - ca. 1349)


(E?)(L?) http://www.hs-augsburg.de/~harsch/Chronologia/Lspost14/Ockham/ock_intr.html

Guillelmus de Ockham, ca. 1288 - ca. 1349

p e r s o n a

Guillelmus de Ockham, theologus et philosophus Anglicus, natus circa annum 1288
in vico Ockham, fortasse pestilentia periit Monaci in Bavaria circa annum 1349.

Guillelmus de Ockham, ca. 1330 (Codex 464/571, Gonville and Caius College, Cambridge)

o p e r a


(E?)(L?) http://wordcraft.infopop.cc/Archives/2004-2-Feb.htm

Ockham's razor


(E?)(L?) http://wordcraft.infopop.cc/eponyms.htm

ockham's razor - William of Ockham, ~1285-?1349 - general principle to prefer the simpler of two competing explanantions


(E?)(L?) http://www.newadvent.org/cathen/15636a.htm

William of Ockham

Fourteenth-century Scholastic philosopher and controversial writer, born at or near the village of Ockham in Surrey, England, about 1280; died probably at Munich, about 1349. He is said to have studied at Merton College, Oxford, and to have had John Duns Scotus for teacher. At an early age he entered the Order of St. Francis. Towards 1310 he went to Paris, where he may have had Scotus once more for a teacher. About 1320 he became a teacher (magister) at the University of Paris. During this portion of his career he composed his works on Aristotelean physics and on logic. In 1323 he resigned his chair at the university in order to devote himself to ecclesiastical politics. In the controversies which were waged at that time between the advocates of the papacy and those who supported the claims of the civil power, he threw his lot with the imperial party, and contributed to the polemical literature of the day a number of pamphlets and treatises, of which the most important are "Opus nonaginta dierum", "Compendium errorum Joannis Papć XXII", "Qućstiones octo de auctoritate summi pontificis". He was cited before the pontifical Court at Avignon in 1328, but managed to escape and join John of Jandun and Marsilius of Padua, who had taken refuge at the Court of Louis of Bavaria. It was to Louis that he made the boastful offer, "Tu me defendas gladio; ego te defendam calamo".

In his controversial writings William of Ockham appears as the advocate of secular absolutism. He denies the right of the popes to exercise temporal power, or to interfere in any way whatever in the affairs of the Empire. He even went so far as to advocate the validity of the adulterous marriage of Louis's son, on the grounds of political expediency, and the absolute power of the State in such matters. In philosophy William advocated a reform of Scholasticism both in method and in content. The aim of this reformation movement in general was simplification. This aim he formulated in the celebrated "Law of Parsimony", commonly called "Ockham's razor": "Entia non sunt multiplicanda sine necessitate".
...


(E?)(L?) http://www.philosophypages.com/dy/o.htm#ockh

William of Ockham


(E2)(L1) http://dictionary.reference.com/browse/Ockham, William of


(E2)(L1) http://dictionary.reference.com/browse/Ockham's razor


(E?)(L?) http://www.searchforancestors.com/surnames/origin/o/ockham.php

Ockham Surname Origin


(E?)(L?) http://turnbull.mcs.st-and.ac.uk/history/Mathematicians/Ockham.html

Ockham, William of (1503*)


(E?)(L?) http://www-history.mcs.st-and.ac.uk/Quotations/Ockham.html

Quotations by William of Ockham


(E?)(L1) http://plato.stanford.edu/contents.html

Ockham [Occam], William (Paul Vincent Spade)


(E?)(L?) http://plato.stanford.edu/entries/ockham/

William of Ockham

First published Fri Aug 16, 2002; substantive revision Sat Jul 2, 2011

William of Ockham (c. 1287–1347) is, along with Thomas Aquinas and John Duns Scotus, among the most prominent figures in the history of philosophy during the High Middle Ages. He is probably best known today for his espousal of metaphysical nominalism; indeed, the methodological principle known as “Ockham's Razor” is named after him. But Ockham held important, often influential views not only in metaphysics but also in all other major areas of medieval philosophy—logic, physics or natural philosophy, theory of knowledge, ethics, and political philosophy—as well as in theology.




(E?)(L1) http://whatis.techtarget.com/definitionsAlpha/0,289930,sid9_alpO,00.html

"Ockham's razor" (also spelled "Occam's razor") is the idea that, in trying to understand something, getting unnecessary information out of the way is the fastest way to the truth or to the best explanation. William of Ockham (1285-1349), English theologian and philosopher, spent his life developing a philosophy that reconciled religious belief with demonstratable, generally experienced truth, mainly by separating the two. Where earlier philosophers attempted to justify God's existence with rational proof, Ockham declared religious belief to be incapable of such proof and a matter of faith. He rejected the notions preserved from Classical times of the independent existence of qualities such as truth, hardness, and durability and said these ideas had value only as descriptions of particular objects and were really characteristics of human cognition.
...


(E?)(L?) http://www.iep.utm.edu/ockham/

William of Ockham (Occam, c.1280 – c.1349)

"William of Ockham", also known as "William Ockham" and "William of Occam", was a fourteenth-century English philosopher. Historically, Ockham has been cast as the outstanding opponent of Thomas Aquinas (1224-1274): Aquinas perfected the great “medieval synthesis” of faith and reason and was canonized by the Catholic Church; Ockham destroyed the synthesis and was condemned by the Catholic Church. Although it is true that Aquinas and Ockham disagreed on most issues, Aquinas had many other critics, and Ockham did not criticize Aquinas any more than he did others. It is fair enough, however, to say that Ockham was a major force of change at the end of the Middle Ages. He was a courageous man with an uncommonly sharp mind. His philosophy was radical in his day and continues to provide insight into current philosophical debates.
...
2. The Razor

Ockham’s Razor is the principle of parsimony or simplicity according to which the simpler theory is more likely to be true. Ockham did not invent this principle; it is found in Aristotle, Aquinas, and other philosophers Ockham read. Nor did he call the principle a “razor.” In fact, the first known use of the term “Occam’s razor” occurs in 1852 in the work of the British mathematician William Rowan Hamilton. Although Ockham never even makes an argument for the validity of the principle, he uses it in many striking ways, and this is how it became associated with him.
...


(E?)(L1) http://www.who2.com/

Ockham, William of | William of Ockham


(E6)(L1) http://mathworld.wolfram.com/letters/O.html
Hier findet man lediglich einen Literaturlink zu:


Ockham Algebra


(E?)(L?) http://scienceworld.wolfram.com/biography/Ockham.html

Ockham, William of (ca. 1285-1349)


(E?)(L?) http://scienceworld.wolfram.com/physics/OckhamsRazor.html

Ockham's Razor

A premise in the philosophy of science due to William of Ockham Eric Weisstein's World of Biography which states that "entities should not be multiplied unnecessarily." This is commonly interpreted to mean that the simplest of a set of competing viable theories is preferable.
...


(E1)(L1) http://www.word-detective.com/010506.html#Ockhams razor

Ockham's Razor

"William of Ockham" (a small town in Surrey, England, also spelled "Occam") was an English philosopher, theologian and Franciscan friar who developed what has become known as "Ockham's Razor" or the "principle of parsimony".
...


(E?)(L?) http://www.wordsmith.org/words/ockhams_razor1.html

Ockham's razor also Occam's razor (OK-ehmz ray-zuhr) noun
...


(E?)(L?) http://www.wordsmith.org/words/ockhams_razor.html

...
MEANING: noun: The maxim that the simplest of explanations is more likely to be correct than any other.

ETYMOLOGY: After William of Ockham (c. 1288-1348), a logician and theologian, who is credited with the idea.
...


(E?)(L?) http://wordsmith.org/awad/archives/0510

Ockham's razor


(E?)(L?) http://wotug.org/parallel/www/occam/occam-bio.html

Biography

William of Ockham, born in the village of Ockham in Surrey (England) about 1285, was the most influential philosopher of the 14th century and a controversial theologian.
...


(E1)(L1) http://books.google.com/ngrams/graph?corpus=0&content=Ockham's razor
Abfrage im Google-Corpus mit 15Mio. eingescannter Bücher von 1500 bis heute.

Engl. "Ockham's razor" taucht in der Literatur um das Jahr 1820 / 1870 auf.

Erstellt: 2013-11

P

Q

R

S

Symbolic logic (W3)

Als Gründer der engl. "symbolic logic" (auch "formal logic", "mathematical logic") gilt Giuseppe Peano (1858-1932).

Die Grundlagen dieses Wissenschaftszweiges legten Gottfried Wilhelm Leibniz (1646-1716) und Friedrich Ludwig Gottlob Frege (1848-1925). Die mathematischen Philosophen Alfred North Whitehead (1861-1947) und Bertrand Arthur William Russell (1872-1970) entwickelten die "symbolische Logik" in ihrem Werk "Principia Mathematica", das im Jahr 1910 erschien, weiter.

(E?)(L?) http://www.aslonline.org/index.htm
Association of Symbolic Logic

(E?)(L?) http://www.aslonline.org/othersites.htm

Links to Other Sites

Organizations Research Institutes Scholarly Resources


(E?)(L?) http://www.businessdictionary.com/definition/symbolic-logic.html


(E?)(L?) http://www.christianlehmann.eu/


(E?)(L?) http://193.175.207.139:8080/lido/Lido


(E?)(L1) http://www.gutenberg.org/browse/authors/c
Carroll, Lewis, 1832-1898: Symbolic Logic, 1897

(E?)(L?) http://www.philosophypages.com/dy/ix3.htm


(E?)(L?) http://www.philosophypages.com/dy/s9.htm#sylo


(E2)(L1) http://dictionary.reference.com/browse/symbolic+logic


(E?)(L?) http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Peano.html

Peano was the founder of "symbolic logic" and his interests centred on the foundations of mathematics and on the development of a formal logical language.
...


(E?)(L?) http://mathworld.wolfram.com/SymbolicLogic.html

The study of the meaning and relationships of statements used to represent precise mathematical ideas. "Symbolic logic" is also called "formal logic".

SEE ALSO: Logic, Metamathematics


(E1)(L1) http://ngrams.googlelabs.com/graph?corpus=0&content=Symbolic logic
Abfrage im Google-Corpus mit 15Mio. eingescannter Bücher von 1500 bis heute.

Engl. "Symbolic logic" taucht in der Literatur um das Jahr 1890 auf.

Erstellt: 2011-03

T

U

V

W

X

Y

Z

Bücher zur Kategorie:

Etymologie, Etimología, Étymologie, Etimologia, Etymology
UK Vereinigtes Königreich Großbritannien und Nordirland, Reino Unido de Gran Bretańa e Irlanda del Norte, Royaume-Uni de Grande-Bretagne et d'Irlande du Nord, Regno Unito di Gran Bretagna e Irlanda del Nord, United Kingdom of Great Britain and Northern Ireland
Logik, Lógica, Logique, Logica, Logic

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

Smith, Peter (Author)
An Introduction to Formal Logic

(E?)(L1) http://www.amazon.ca/exec/obidos/ASIN/0521008042/etymologporta-20


(E?)(L1) http://www.amazon.de/exec/obidos/ASIN/0521008042/etymologety0f-21


(E?)(L1) http://www.amazon.fr/exec/obidos/ASIN/0521008042/etymologetymo-21


(E?)(L1) http://www.amazon.it/exec/obidos/ASIN/0521008042/etymologporta-21


(E?)(L1) http://www.amazon.co.uk/exec/obidos/ASIN/0521008042/etymologety0d-21


(E?)(L1) http://www.amazon.com/exec/obidos/ASIN/0521008042/etymologpor09-20
Paperback: 366 pages
Publisher: Cambridge University Press (6 Nov 2003)
Language English


Product Description
Formal logic provides us with a powerful set of techniques for criticizing some arguments and showing others to be valid. These techniques are relevant to all of us with an interest in being skilful and accurate reasoners. In this highly accessible book, Peter Smith presents a guide to the fundamental aims and basic elements of formal logic. He introduces the reader to the languages of propositional and predicate logic, and then develops formal systems for evaluating arguments translated into these languages, concentrating on the easily comprehensible 'tree' method. His discussion is richly illustrated with worked examples and exercises. A distinctive feature is that, alongside the formal work, there is illuminating philosophical commentary. This book will make an ideal text for a first logic course, and will provide a firm basis for further work in formal and philosophical logic.

Book Description
This book introduces the reader to the languages of propositional and predicate logic, and then develops formal systems for evaluating arguments translated into these languages. It will make an ideal text for a first logic course, and will provide a firm basis for further work in formal and philosophical logic.


Erstellt: 2011-03

T

U

V

W

X

Y

Z